



### MANAGING FOR RESILIENT ECOSYSTEMS: EXAMINING THE OPTIONS

### Jeanne C. Chambers







### **ECOSYSTEMS IN TRANSITION**

### Landscape Changes ~

- Cheatgrass conversion (>6%)
  80% susceptible; 45% of that area moderate to high risk
- Pinyon and juniper expansion (>10%)
  2-6 fold increase since 1860; canopy closure in next 50 yrs
- Larger and more frequent fires

### Management Goals & Actions ~

 Increase resilience of native ecosystems to stress and disturbance and enhance resistance to invasive species









| Primary<br>Invaders | Cheatgrass<br>Red brome<br>Annual forbs | Cheatgrass<br>Medusahead<br>Ann/Per Forbs | Cheatgrass<br>Japanese bro<br>Ann/Per Forbs | Lower<br>Elevation<br>Species |
|---------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------|
| Historic Fire       | Almost Never                            | 200-350                                   | 50-70;<br>150-300                           | Rare                          |
| Current             | 1                                       | 70 -160                                   | 70-160?                                     | ?                             |

(Baker et al. 2011; Balch et al. 2012)

### **RESILIENCE TO DISTURBANCE**





#### Resilience changes over environmental gradients

- Productivity & more favorable growing conditions
- Highest for mountain big sage and mountain brush
- Lowest for salt desert and alpine

(Wisdom & Chambers 2009; Brooks and Chambers 2011; Condon et al. 2011; Chambers et al in process.)

### **RESILIENCE TO DISTURBANCE**





Resilience decreases with disturbance/stress outside of historic range of variability

- Changes in vegetation structure or composition
  - Perennial grass/forb
    - Woody species
  - Invasive species
- Altered fire regimes
  Severity, extent,

frequency

### RESISTANCE TO CHEATGRASS





# Resistance reflects a species fundamental & realized niche

- Fundamental niche determined by environment
- Lowest- salt desert and alpine
- Highest- Wyoming sage
- Realized niche determined by species interactions
  - (competition/facilitation)

### RESISTANCE TO CHEATGRASS





# Resistance decreases with disturbance/stress

- Increases in resource availability
- Removal 2 to 3 fold
- ▶ Burning 2 to 6 fold
- Removal + Burning –10 to 30 fold
- Perennial grasses and forbs best competitors

### SAGEBRUSH TREATMENT EVALUATION PROJECT





Cool & Wet



Black Sagebrush Wyoming Sagebrush Mountain Sagebrush

Warm & Dry

### STATE AND TRANSITION MODEL STATE I - WYOMING/MOUNTAIN SAGE



#### Highest resilience and resistance

- Lower treatment severity
- Sufficient perennial grasses and forbs to facilitate recovery

#### **Caveats**

- Cheatgrass will probably always occur on Wyoming sage and warmer mountain big sage sites given a seed source
- > Wyoming sage highest risk of cheatgrass dominance after fire
- > Overgrazing post treatment can result in cheatgrass dominance



Cool mountain big sagebrush and Idaho fescue site

3 years post-burn





Black sagebrush/Wyoming sagebrush and bluebunch wheatgrass site 5 years post-treatment

# STATE II – WYOMING/MOUNTAIN SAGE



#### Lowest resilience and resistance

- High treatment severity
- Insufficient grasses and forbs to facilitate recovery

#### Caveats

- Effects of mechanical vs fire will depend on site conditions
- Revegetation can be difficult
- Livestock management necessary



Warm mountain big sagebrush and Idaho fescue site

5 years post burn

### LANDSCAPE APPROACH

- First → assess environmental characteristics, vegetation types and ecological conditions at management scales
- Second → prioritize management activities at both site and landscape scales based on ecosystem resilience and resistance
  - ~ Protection, Prevention and Restoration
- Third → monitor outcome and adapt management



### PROTECTION

- Areas with inherently low resistance or resilience (salt desert, Wyoming sage, subalpine and alpine)
- Areas of high conservation value
- Eliminate stressors like repeated fire and inappropriate livestock grazing
- Control surface disturbances and invasion corridors
- Increase efforts to detect and eradicate invasives
- Create refugia for all ecosystem types





## **PREVENTION - VEGETATION TREATMENTS**

- Areas with moderate to high resilience and especially resistance
- Wet and cool Wyoming & mountain sage
- Adequate perennial herbaceous species and shrubs to ensure recovery
- Consider disturbance severity
- Fire eliminates all fire intolerant species, increases resources for invasive species
- Mechanical treatments that remove only trees, less effect on resources
- *Minimize other stresses*





# TRANSFORMATIVE/ADAPTIVE RESTORATION

- Most successful prior to invasive plant dominance
- Post-fire rehabilitation, fire breaks adjacent to intact areas, WUI areas, critical habitat for T&E species



- ➤ Climate Change → species adapted to drier and warmer conditions; assisted migration (climate suitability;seed zone shifts)
- ► Invasive species → different phenologies and rooting depths (must compete with annual and perennial invaders)
  - → Weed Suppressive Bacteria Seed Bank Fungal Pathogens?
- Fire → species tolerant of fire and capable of soil stabilization (perennial, root-sprouting, rhizomatous)
- Address the establishment bottleneck

# MONITOR AND ADAPT

 Implement comprehensive monitoring to track landscape change & management outcomes



- Regional network of monitoring sites that includes major environmental gradients
- Monitoring of all major land treatments
- Common data base for all monitoring results (Land Treatment Digital Library)
- Monitoring products that track change across Region

### Transcend agency boundaries

# EMBRACE CHANGE

- Increasing resilience and resistance to invasives best management option
- Both protection and prevention important
- Transformative restoration & assisted migration require greater emphasis
- Comprehensive monitoring essential
- Increase capacity to address emerging issues
- Improve funding mechanisms & increase flexibility
- Mobilize research and management teams

### Emphasize collaboration and information sharing



### ACKNOWLEDGEMENTS

- Bethany Bradley
- Bob Blank
- Dave Board
- Matt Brooks
- Lea Condon
- Carla D'Antonio
- Jessica Dhaemers
- Matt Germino
- Jim Grace
- Stuart Hardegree
- Susan Meyer
- Rick Miller
- Mike Pellant
- Dave Pyke
- Bruce Roundy
- Robin Tausch
- Peter Weisberg
- Alison Whitaker
- Mike Wisdom



Nolan Preece

Sagebrush Treatment Evaluation Project - JFSP

Exotic Bromus Grasses in the Western US: Current and future invasions, impacts, and management - USDA AFRI REENet

Integrating ecological forecasting methods to improve prioritization of invasive species management – USGS Powell Center